Don't be fooled. <
'Clean Coal' Technologies, Carbon Capture & Sequestration
(Updated November 2018)
Coal is used extensively as a fuel in most parts of the world.
Burning coal produces over 14 billion tonnes of carbon dioxide each year.
Attempting to use coal without adding to atmospheric carbon dioxide levels is a major technological challenge.
The greatest challenge is bringing the cost of this down sufficiently for 'clean coal' to compete with nuclear power on the basis of near-zero emissions for base-load power.
There is typically at least a 20% energy penalty involved in 'clean coal' processes.
World R&D on CCS exceeded $1 billion per year over 2009 to 2013, then fell sharply.
The term 'clean coal' is increasingly being used for supercritical coal-fired plants without CCS, on the basis that CO2 emissions are less than for older plants, but are still much greater than for nuclear or renewables.
Some 27% of primary energy needs are met by coal and 38% of electricity is generated from coal. About 70% of world steel production depends on coal feedstock. Coal is the world's most abundant and widely distributed fossil fuel source. However, each year burning coal produces over 14 billion tonnes of carbon dioxide (CO2), which is released to the atmosphere, most of this being from power generation.
Development of new 'clean coal' technologies is attempting to address this problem so that the world's enormous resources of coal can be utilised for future generations without contributing to global warming. Much of the challenge is in commercialising the technology so that coal use would remain economically competitive despite the cost of achieving low, and eventually 'near-zero', emissions. The technologies are both costly and energy-intensive.
As many coal-fired power stations approach retirement, their replacement gives much scope for 'cleaner' electricity. Alongside nuclear power and harnessing renewable energy sources, one hope for this is via 'clean coal' technologies, such as carbon capture and sequestration, also called carbon capture and storage (both abbreviated as CCS) or carbon capture, use and storage (CCUS). It involves the geological storage of CO2, typically 2-3 km deep, as a permanent solution. However in its Energy Technology Perspectives 2014 the International Energy Agency (IEA) notes: “CCS is advancing slowly, due to high costs and lack of political and financial commitment.” In its 2016 version of the same report, the IEA reported that there were 17 large-scale CCS projects operating globally.
Consequently the term 'clean coal' is increasingly being used for supercritical and ultra-supercritical coal-fired plants without CCS, running at 42-48% thermal efficiency. These are also known as high-efficiency low-emission (HELE) plants. The capital cost of ultra-supercritical (USC) HELE technology is 20-30% greater than a subcritical unit, but the higher efficiency reduces emissions and fuel costs to about 75% of subcritical plants. A supercritical steam generator operates at very high temperature (about 600°C) and pressures (above 22 MPa), where liquid and gas phases of water are no longer distinct. In Japan and South Korea about 70% of coal-fired power comes from supercritical and ultra-supercritical plants.
Managing wastes from coal
Burning coal, such as for power generation, gives rise to a variety of wastes which must be controlled or at least accounted for. So-called 'clean coal' technologies are a variety of evolving responses to late 20th century environmental concerns, including that of global warming due to carbon dioxide releases to the atmosphere. However, many of the elements have in fact been applied for many years, and they will be only briefly mentioned here:
Coal cleaning by 'washing' has been standard practice in developed countries for some time. It reduces emissions of ash and sulfur dioxide when the coal is burned.
Electrostatic precipitators and fabric filters can remove 99% of the fly ash from the flue gases – these technologies are in widespread use.
Flue gas desulfurisation reduces the output of sulfur dioxide to the atmosphere by up to 97%, the task depending on the level of sulfur in the coal and the extent of the reduction. It is widely used where needed in developed countries.
Low-NOx burners allow coal-fired plants to reduce nitrogen oxide emissions by up to 40%. Coupled with re-burning techniques NOx can be reduced 70% and selective catalytic reduction can clean up 90% of NOx emissions.
Increased efficiency of plant – up to 46% thermal efficiency now (and 50% expected in future) means that newer plants create less emissions per kWh than older ones. See Table 1.
Advanced technologies such as Integrated Gasification Combined Cycle (IGCC) and Pressurised Fluidised Bed Combustion (PFBC) enable higher thermal efficiencies still – up to 50% in the future.
Ultra-clean coal (UCC) from new processing technologies which reduce ash below 0.25% and sulfur to very low levels mean that pulverised coal might be used as fuel for very large marine engines, in place of heavy fuel oil. There are at least two UCC technologies under development. Wastes from UCC are likely to be a problem.
Gasification, including underground coal gasification (UCG) in situ, uses steam and oxygen to turn the coal into carbon monoxide and hydrogen.
Sequestration refers to disposal of liquid carbon dioxide, once captured, into deep geological strata.
Some of these impose operating costs and energy efficiency loss without concomitant benefit to the operator, though external costs will almost certainly be increasingly factored in through carbon taxes or similar which will change the economics of burning coal.
However, waste products can be used productively. In 1999 the EU used half of its coal fly ash and bottom ash in building materials (where fly ash can replace cement), and it used 87% of the gypsum from flue gas desulfurisation.
Carbon dioxide from burning coal is the main focus of attention today, since it is implicated in global warming, and the Kyoto Protocol requires that emissions decline, notwithstanding increasing energy demand.
CCS technologies are in the forefront of measures to enjoy 'clean coal'. CCS involves two distinct aspects: capture, and storage.
The energy penalty of CCS is generally put at 20-30% of electrical output, though since no full commercial systems are yet in operation, this is yet to be confirmed. US and European figures below suggest a small or even negligible proportion.
Table 1. Coal-fired power generation, thermal efficiency
country Technology Efficiency Projected efficiency with CCS
Australia Black ultra-supercritical WC 43% 33%
Black supercritical WC 41%
Black supercritical AC 39%
own ultra-supercritical WC 35% 27%
own supercritical WC 33%
own supercritical AC 31%
Belgium Black supercritical 45%
China Black supercritical 46%
Czech Republic own PCC 43% 38%
own ICGG 45% 43%
Germany Black PCC 46% 38%
own PCC 45% 37%
Japan, Korea Black PCC 41%
Russia Black ultra-supercritical PCC 47% 37%
Black supercritical PCC 42%
South Africa Black supercritical PCC 39%
USA Black PCC & IGCC 39% 39%
USA (EPRI) Black supercritical PCC 41%
OECD Projected Costs of Generating Electricity 2010, Tables 3.3.
PCC= pulverised coal combustion, AC= air-cooled, WC= water-cooled.
Capture & separation of CO2
See Part 2 >
view the rest of the comments →
22151544? ago
Part 4 >
Producing oxygen for oxyfuel and IGCC
Today most oxygen is recovered cryogenically from liquid air, which is a relatively expensive process.
The main prospective means of economically producing large amounts of oxygen is the ion transport membrane (ITM) process. It is being developed for use in feeding integrated gasification combined cycle (IGCC), oxyfuel combustion, and other advanced power generation systems including underground coal gasification. In the USA, EPRI is involved on behalf of the electric utilities in helping to scale-up ITM technology for clean energy.
ITM technology uses a ceramic material which, under pressure and temperature, ionizes and separates oxygen molecules from air. No external source of electrical power is required. Relative to traditional cryogenic air separation units, ITM technology could decrease internal power demand by as much as 30% and capital costs by approximately 30% in the oxygen supply systems at oxyfuel and IGCC power plants.
The oxygen requirements for the power generation industry could grow substantially in supporting advanced coal-based power generation and integrated carbon capture technology. EPRI estimates the current US power generation industry share of the oxygen market is about 4%, but it could become the dominating market driver, accounting for more than 60% of the future market, or approximately two million tones per day of oxygen by 2040.
Carbon capture and utilisation/use (CCU)
Obviously enhanced oil recovery outlined above amounts to utilisation as well as storage, hence CCS, but beyond that the CO2 may be used with hydrogen to make methanol, which is a plausible substitute for petrol/gasoline, and also dimethyl ether from that, a good diesel substitute. There are other possibilities for embedding the carbon in materials such as polycarbonates, which are long-lasting. However, the CO2 quantities involved are trivial compared with the accepted need to reduce carbon emissions. See further in information paper on Transport and the Hydrogen Economy.
Economics
The World Coal Institute noted that in 2003 the high cost of carbon capture and storage (estimates of $150-220 per tonne of carbon, $40-60/t CO2 – 3.5 to 5.5 c/kWh relative to coal burned at 35% thermal efficiency) made the option uneconomic. But a lot of work is being done to improve the economic viability of it, and the US Department of Energy (DOE) was funding R&D with a view to reducing the cost of carbon sequestered to $10/tC (equivalent to 0.25 c/kWh) or less by 2008, and by 2012 to reduce the cost of carbon capture and sequestration to a 10% increment on electricity generation costs. These targets now seem very unrealistic.
A 2000 US study put the cost of CO2 capture for IGCC plants at 1.7 c/kWh, with an energy penalty 14.6% and a cost of avoided CO2 of $26/t ($96/t C). By 2010 this was expected to improve to 1.0 c/kWh, 9% energy penalty and avoided CO2 cost of $18/t ($66/t C), but these numbers now seem unduly optimistic.
Figures from IPCC Mitigation working group in 2005 for IGCC put capture and sequestration cost at 1.0-3.2 c/kWh, thus increasing electricity cost for IGCC by 21-78% to 5.5 to 9.1 c/kWh. The energy penalty in that was 14-25% and the mitigation cost $14-53/t CO2 ($51-200/tC) avoided. These figures included up to $5 per tonne CO2 for transport and up to $8.30 /t CO2 for geological sequestration.
In 2009 the OECD’s International Energy Agency (IEA) estimated for CCS $40-90/t CO2 but foresees $35-60/t by 2030, and McKinsey & Company estimated €60-90/t reducing to €30-45/t after 2030.
ExxonMobil is proposing that, where amine scrubbing is employed, the whole power plant exhaust is directed to a carbonate fuel cell which will generate over 20% more power overall, instead of costing 10% of the power due to diversion of steam. The CO2 still needs to be disposed of.
A 2017 study by Energy Innovation in the USA comparing ultrasupercritical coal with and without CCS (90% capture) showed that the LCOE figures were $151.34/MWh and $92.46/MWh, respectively – nearly two-thirds more. This was attributed largely to the extra energy required to extract, pump, and compress the CO2, and hence not amenable to great improvement.
FutureGen demonstration projects, USA
About 2005 the DOE announced the $1.3 billion FutureGen project to design, build and operate a nearly emission-free coal-based electricity and hydrogen production plant. Some $250 million of the funding was to be provided by industry, from about eight companies. The FutureGen initiative would have comprised a coal gasification (IGCC) plant with additional water-shift reactor, to produce hydrogen and carbon dioxide. It would also involve development of the ITM oxygen separation technology. About 700,000 tonnes of CO2 (some 60% of throughput) per year would then be separated by membrane technology and sequestered geologically. The hydrogen would have been be burned in a 275 MWe generating plant and in fuel cells. Later FutureGen figures referred to 90% CO2 capture and 330 MWe gross, 240 MWe net generation.
Construction of this original FutureGen was due to start in 2009, for operation in 2012, with target of 90% carbon capture. The project was designed to validate the technical feasibility and economic viability of near-zero emission coal-based generation. In particular it aimed to produce electricity with only a 10% cost premium and to show that hydrogen can be produced at $3.80 per GJ, equivalent to petrol at 12.7 cents per litre. In December 2007 Mattoon Illinois was chosen as the site of the demonstration plant. However, in January 2008 the DOE announced that it would withdraw its funding for the project, expressing concerns over escalating costs – its 74% share having doubled to $1.3 billion. The Mattoon site in Coles County was subsequently sold.
See Part 5 >